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(d) Su¢ ciency
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2. Parameters and Statistics

In statistical estimation we use a statistic (a function of a sample) to es-
timate a parameter, a numerical characteristic of a statistical population.
In the preceding discussion of the binomial distribution, we discussed a
well-known statistic, the sample proportion bp, and how its long-run distri-
bution over repeated samples can be described, using the binomial process
and the binomial distribution as models. We found that, if the binomial
model is correct, we can describe the exact distribution of bp (over repeated
samples) if we know N and p, the parameters of the binomial distribution.
The situation can be diagrammed as in the top of Figure 1 below.

2.1. Reversing the Information Flow in Statistical
Inference

Probability theory tells us about the long run behavior of bp, but this re-
quires speci�cation of precisely what we do not know, i.e., p, the proportion
in the population. However, what we would like to have is something dif-
ferent from what probability theory provides directly. Generally what we
have is one sample, of size N , and what we would like probability theory
to provide for us is knowledge about p on the basis of the information in
our data. But it doesn�t, and so probability theory, as important as it is,
provides just the beginning point for statistical inference.
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Figure 1: Reversing the information �ow in statistical inference

Looking back at Figure 1, what we would like is to turn around the
direction of information �ow. In probability theory, knowledge of p and
N leads to knowledge about the long run behavior of bp. In statistical
inference, we would like something else � a method to use knowledge ofbp and N to lead to knowledge of p.
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3. Sampling Distributions

A statistic is any function of the sample. Over repeated samples, statistics
will almost always vary in value. So, over repeated samples, a statistic will
have a sampling distribution. Sampling distributions have several charac-
teristics:

1. Exact sampling distributions are di¢ cult to derive

2. They are often di¤erent in shape from the distribution of the popu-
lation from which they are sampled

3. They often vary in shape (and in other characteristics) as a function
of N .
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4. Sampling Error

Consider any statistic b� used to estimate a parameter �:For any given
sample of size N , it is virtually certain that b� will not be equal to �. We
can describe the situation with the following equation in random variables

b� = � + "
where " is called �sampling error,�and is de�ned tautologically as

" = b� � � (1)

i.e., the amount by which b� is wrong. In most situations, " can be either
positive or negative.
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5. Principles of �Good Estimation�

A statistic that is used to estimate a particular parameter is called an
estimator of that parameter. A realized value of the estimator is called an
estimate of the parameter. Although some of the estimators that we use
(like the sample mean X� and the sample proportion bp) are the sample
analogs of the population quantities they estimate, many other estimators
(for example, s2, the sample variance) are not.
For any parameter, there are many possible estimators. Generally, an

estimator in wide use has achieved popularity because it satis�es one or
more optimality criteria, i.e. qualities that a good estimator is supposed
to have. Below, we discuss a number of commonly used criteria for a good
estimator.

5.1. Unbiasedness

De�nition 5.1 (Unbiased Estimator) An estimator b� of a parameter �
is unbiased if E(b�) = �, or, equivalently, if E (") = 0, where " is sampling
error as de�ned in Equation 1.

Ideally, we would like the positive and negative errors of an estimator
to balance out in the long run, so that, on average, the estimator is neither
high (an overestimate) nor low (an underestimate).
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5.2. Consistency

We would like an estimator to get better and better as N gets larger and
larger, otherwise we are wasting our e¤ort gathering a larger sample. If we
de�ne some error tolerance �, we would like to be sure that sampling error
" is almost certainly less than � if we let N get large enough. Formally we
say the following.

De�nition 5.2 (Consistency). An estimator b� of a parameter � is con-
sistent if for any error tolerance � > 0, no matter how small, a sequence
of statistics b�N based on a sample of size N will satisfy the following

lim
N!1

Pr
����b�N � ���� < �� = 1 (2)

Example 5.1 (An Unbiased, Inconsistent Estimator) Consider the
statistic D = (X1 + X2)=2 as an estimator for the population mean. No
matter how large N is, D always takes the average of just the �rst two
observations. This statistic has an expected value of �, the population
mean, since

E

��
1

2
X1 +

1

2
X2

��
=
1

2
E (X1) +

1

2
E (X2) =

1

2
�+

1

2
� = �

but it does not keep improving in accuracy as N gets larger and larger.
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5.3. E¢ ciency

All other things being equal, we prefer estimators with a smaller sampling
errors. Several reasonable measures of �smallness�suggest themselves: (a)
the average absolute error, and (b) the average squared error. Consider
the latter. The variance of an estimator can be written

�2b� = E
�b� � E �b���2

and when the estimator is unbiased, E
�b�� = �;so the variance becomes

�2b� = E
�b� � ��2 = E �"2�

since b� � � = ".
For an unbiased estimator, the sampling variance is also the average

squared error, and is a direct measure of how inaccurate the estimator is,
on average. More generally, though, one can think of sampling variance
as the randomness, or noise, inherent in a statistic. (The parameter is the
�signal.�) Such noise is generally to be avoided.
Consequently, the e¢ ciency of a statistic is inversely related to its

sampling variance, i.e.

Efficiency(b�) = 1

�2b�
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The relative e¢ ciency of two statistics is the ratio of their e¢ ciencies,
which is the inverse of the ratio of their sampling variances.

Example 5.2 (Relative E¢ ciency) Suppose statistic A has a sampling
variance of 5, and statistic B has a sampling variance of 10. The relative
e¢ ciency of A relative to B is 2.

5.4. Su¢ ciency

An estimator b� is su¢ cient for estimating � if it uses all the information
about � available in a sample. The formal de�nition is as follows:

De�nition 5.3 (Su¢ cient Statistic) Recalling that any statistic is a
function of the sample, de�ne b�(S) to be a particular value of an estimatorb� based on a speci�c sample S. An estimator b� is a su¢ cient statistic for
estimating � if the conditional distribution of the sample S given b�(S) does
not depend on �.

The fact that once the distribution is conditionalized on b� it no longer
depends on �, shows that all the information that � might �reveal in the
sample�is captured by b�.
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5.5. Maximum Likelihood

The likelihood of a sample of N independent observations is simply the
product of the probability densities of the individual observations. Of
course, if you don�t know the parameters of the population distribution,
you cannot compute the probability density of an observation. The prin-
ciple of maximum likelihood says that the best estimate of a population
parameter is the one that makes the sample most likely. Deriving esti-
mators by the principle of maximum likelihood often requires calculus to
solve the maximization problem, and so we will not pursue the topic here.
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6. Practical vs. Theoretical Considerations

In any particular situation, depending on circumstances, you may have
an overriding consideration that causes you to ignore one or more of the
above considerations � for example the need to make as small an error
as possible when using your own data. In some situations, any additional
error of estimation can be extremely costly, and practical considerations
may dictate a biased estimator if it can be guaranteed that a bias can
reduce " for that sample.
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